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Abstract
We give the expressions as power series expansion in the radial variable r, for the magnetic field
of a solenoid modelled as a block conductor. This approach will be incorporated in ICOOL [1] as

one of the possible options.
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I. INTRODUCTION

The reasons to use BLOCKS were nicely summarized in a recent paper [2] The exact
analytical field on axis of a block conductor solenoid of inner R; and outer R, radius, total

length 2 % L and current density J is,
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the meaning of f(¥)(s) is explained below.

Knowing the field on axis it is possible to write the field at any r as a series power

expansion in r. The result for the radial field B,.(r,s) is
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and for the longitudinal field B(r, s) is,
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where f(27)(s) is the 2j-derivative respect to the axial variable s of the field on axis, i.e Eq. 1
(see also [3]).

It is not difficult to show that these expressions satisfy VB = 0 (daBr* + B’" + 833 =0) and
VxB=0 (% e

= 95:) term by term.

II. DERIVATION

In cylindrical coordinates the most general scalar potential for r < Ry is
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where Iy(z), I;(z) are the modified Bessel functions of order 0 and 1, respectively, and A(k)

is a coefficient to be determine by the boundary condition given by Eq. 1.

Multiplying by [ d s'e=**" both sides of the expression for B,(0, s) we get,

) _ el d Sle—iks’f(O) (S/).



After substitution in Eqs. 4 and using the power series expansion of the Bessel functions,
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we obtain the final results Egs. 2 and 3.

Notice that the expressions are valid for r < Ry, and that the derivatives have been sym-
bolically computed using the program Mathematica [4] to the 16-th order. These functions
are given as external Fortran functions in ICOOL.

Next we compare the values of B, and By with the values calculated using a numerical
integration of sheets; both methods give identical values for the fields, except at s = L,

r = Ry, at the edge of the current block distribution.
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FIG. 1: Block solenoid with R1=0.5 ¢m, R2=0.6 cm and L=1 m. (left) B, and (right) Bs com-

parison with the sheet model results.



